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Question 1 [20 marks] 

1.1 Briefly explain the following terminologies as they are applied to probability theory: 

(a) Boolean algebra B(S) [2] 
(b) o algebra [3] 

) Measure on a B(S) algebra [3] c 
d) Convolution of two integrable real-valued functions f and g [3] 

1.2 Let S = {a,b,c,d}. Find: 

(a) P(S), [4] 
(b) size of P(S). (1] 

1.3 Consider the random variables X and Y that represent the number of vehicles that arrive at 

two separate corners during a certain 2-minute period. These two street corners are fairly 

close together so that. it is important that the traffic engineers deal with them jointly if 

necessary. The joint distribution of X and Y is known to be 

, z= 0,1,2,...,9=0,1,2,..., 

, otherwise 

91 
f(z,y) = { pa 

Find the probability that less than 4 vehicles arrive at the two street corners during the 
stated time period. [4] 

Question 2 [30 marks] 

2.1 Let X and Y denote the lengths of life, in years, of two components in an electronic system. 

If the joint density function of these variables is 

—(r+y) _ e ,ct> 0, y > 0, 
f(z,y) = ‘ 0 , otherwise, 

then find the mean value of Y. [6] 

2.2 Suppose X and Y are random variables such that (X,Y) must belong to the rectangle in 

xy- plane containing all points (x, y) for which 0 < x < 3 and 0 < y < 4. Suppose that the 
joint cumulative distribution of X and Y at any point (z, y) in this rectangle is specified as 

follows: F(z, y) = seule tu) 
(a) Use the joint cumulative distribution, F(z, y), to find (P(1 <2 <2,1<y< 2) [7] 
(b) Find the joint probability density function of X and Y [4] 

2.3 Let X be a discrete random variable with mean p and variance g?. Also, let k be some 

positive integer. Show that P[|X — p| < ko] >1-. [13]



Question 3 [20 marks] 

3.1 Let X be a random with a probability density function f(x) and a moment-generating func- 
tion denoted by m x(t). Show that mx(t) packages all moments about the origin in a single 

co tk expression. That is, mx(t) = ~32.9 Gi. [5] 

3.2 Let X be a random variable whose moment-generating function, denoted by m x(t), exists. 

Show that its second cumulant (k2) is related to its first and second moments by the following 

relationship ky = [2 — p?. [5] 

3.3 (a) Show that the cumulant-generating function of an exponential random variable (X), with 
a mean +, is Kx(t) = Ind — In[r - ¢]. [5] 
(b) Use the cumulant-generating function provided above to find the variance of X. [5] 

Question 4 [30 marks] 

4.1 The waiting time, in hours, between successive speeders spotted by a radar unit is a contin- 

uous random variable with cumulative distribution function 

1—e** forx>0 
Me} = { 0 otherwise , 

Derive the characteristic function of X and use it to find the mean of X. [8] 

4.2 Let Y be continuous random variable with a probability density function f(y) > 0. Also, let 

U =h(Y). Then show that 

dh~*(u) fulu) = fre (ay, 

iu 
4.3 Suppose that X, and X2 have a joint pdf given by f (x1, 22) = 2e~+) for 0 < a < 2_ < 0. 

Let Y; = X; and Yo = X, + Xo. 

(a) Find f(y, ya); (10] 
(b) Find f(y); [2] 
(c) Find f (ye); [2] 
(d) Are Y; and Y> independent? (1] 

END OF QUESTION PAPER


